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Multiphase CFD and coarse grid simulation

Development of sub-grid drag closure

Validation of drag model in all fluidization regimes

e Summary of results




Applications of Fluidized Beds ¥|_ TECANOLOGY

 Fluidized bed has attracted attention for several decades and has been widely used
in chemical, petrochemical, and energy industries.

« Such as FCC processes, polymerization processes, MTO processes, combustion processes,
biomass thermal conversion, biomass vapor phase upgrading (VPU) process.

» Advantages: high-throughput capabilities, excellent heat and mass transfer characteristics,
and superior reaction rates of gas-solid mixtures.

Reactor

) - ‘ M Fluidised Bed
Particles ¢

-'.- - -
il

: w =z
Maig Colamn Regenerator
. L3 - -

Fluldising#
Combustion Air  Ash

FCC process MTO process Combustion process Biomass VPU process

p—

& ﬁ“&;e U.S. DEPARTMENT OF

7/ ENERGY

NETL Multiphase Flow Science
Home of the "INIIF&I Software Suite. C P C

3/24




- - - - - NATIONAL
Gas-Solid Fluidization Regimes N lsciorcer

* Fluidized bed: A typical fluidized bed is a cylindrical column in which solid particles are
suspended in a fluid at a certain fluid velocity.

 Increasing of gas velocity, several fluidization regimes can be observed.

» Gas-solid fluidization is very complex.
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* From macroscale to microscale
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» Drag models for gas-solid flow simulation
« “Standard” drag models are based on homogeneous solids distribution assumption
« They work best for fine grid simulations where solids are more homogeneous
» Coarse-grid simulations tend to over-predict the drag force.

» Fine-grid simulation is very expensive, especially for
« Small particles belong to Geldart A (dp=~100 microns)
» Grid-independent requires computational grid A=~ 2-10 dp
 Fine grid simulation of industrial-scale reactors is impractical, such as FCC unit, 2D, O(10°); 3D, O(109).
* Coarse grid simulation with A=~100-1000dp is required for industrial-scale reactor simulations.
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Coarse-Grid Simulations Need Sub-Grid Closures TL [tcioroct

ﬁ}\ A B C A-fine grid with standard drag model
i B-coarse grid with standard drag model
0.19m C-target result with proper coarse-grid
. model
Bedheight -« Coarse grid simulation needs to

m exp.

0.96 m

GL I,TM A =2dp A=42dp  A=42dp
"~ Cell=7,611,000 Cell=429,925 Cell=429,925

account for sub-grid effect.

Sub-grid gas-solid drag model is
the most critical part.

The homogeneous drag model has
the form

Fy = Blug — us)

The heterogeneous drag model
introduces a correction factor, C

F,=pB(u, —us)H

CPC
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« Homogeneous drag model (Applicable to highly resolved simulations of small scale systems)

 Derived from experiment or correlations: Wen and Yu, 1996; Ergun, 1952; Gidaspow, 1994

 Derived from PR-DNS of randomly arranged particles: BVK (Beetstra et al., 2005); HKL (Hill

et al., 2001); TGS (Tenneti et al., 2011)

« Heterogeneous drag model-- considering mesoscale structure (Applicable to coarse-grid

simulations of large scale systems, used for scale-up)
* Derived from mesoscale structure method: EMMS (Li and Kwauk, 1994)
v/« Derived from fine grid two-fluid model: Igci et al., 2008; Sarkar et al., 2016
» Derived from fine grid CFD-DEM model: Radl and Sundaresan, 2014

» Derived from PR-DNS of cluster configurations: MMS (Mehrabadi et al., 2016)
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« Homogeneous drag model « Heterogeneous drag model
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 In theory, the heterogeneity index should approach 1 near the maximum solids-packing
limit, the flow becomes homogeneous and no sub-grid corrections are needed.

* Anew drag model was developed.

« A more realistic limit was imposed at the dense regime.
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. . Outlet OQutlet Outlet Outlet
A comprehensive evaluation of il it 2L
drag models for Group A particles o 1 o0m
was performed - 2
- Eight drag models were evaluated il
E — [en]

« Detailed, three-dimensional ’

simulations were conducted
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* The “Traveling fluidized bed” by Dubrawski et al. (2013)
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Figures show the instantaneous and time averaged bed voidage using different drag models
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« Compare the axial profile of time-averaged voidage
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« Compare the axial profile of time-averaged voidage
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» Compare axial profile of time-averaged voidage
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« Compare axial profile of time-averaged voidage
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» Evaluate the agreement for T a—ere

all fluidization regimes i

« Define an average error ®1 —e—DPTFB a T e—
N sI sim 0[5 exp - /
Z 60 -
=1 aq exp N ] /

solute error,%

N
O

 Based on this metric, the new
drag model and the EMMS ~g\
drag model yield the best
agreement for all fluidization
conditions

0

New drag  lgci Radl Gidaspow BVK TGS MMS EMMS Sarkar 2016

« The new drag model is a universal model, hence it is one of the best options
for gas-solid fluidized bed simulations

Xi Gao, Tingwen Li, Avik Sarkar, Ligiang Lu, William A. Rogers, 2018, Chemical Engineering Science, 184, 33-51.
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« Evaluate the computational cost for all
fluidization regimes
» Factors: complexity of the drag expression, "T_a—BFB (64 cores)
the flow patterns simulated and the parallel _| @ TFB (B64cores)
.. 1 —A—FFB (256 cores)
efficiency 1 —&—DPTFB (64 cores)
5 _
 No significant difference in the TFB and P °
DPTFB, about 4h/s. 4l O ——¢ .-——"-.____._,_._- — <
. 1 o—_A
« The computational cost for some drag models il B Z. - &

(Gidaspow, BVK and TGS) are several times
lower than the new drag model in BFB and
FFB.

» These drag models predicted significantly
different flow patterns (overall less dense
bed) compared with that predicted by the new
drag model. (adaptive time step)
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« Coarse grid simulations with homogeneous drag models failed to capture the
gas-solid fluidization behavior in all regimes. Modification of homogeneous
drag models considering sub-grid effect is needed.

A new filtered drag model was developed based on fine grid two fluid model
simulation.

* The new drag model model gave superior predictions of the flow behavior in
all fluidization regimes of Geldart A particles.
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