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Presentation Outline

• Motivation

• Multiphase CFD and coarse grid simulation

• Development of sub-grid drag closure 

• Validation of drag model in all fluidization regimes

• Summary of results



3/24

Applications of Fluidized Beds

FCC process

• Fluidized bed has attracted attention for several decades and has been widely used 

in chemical, petrochemical, and energy industries.

• Such as FCC processes, polymerization processes, MTO processes, combustion processes, 

biomass thermal conversion, biomass vapor phase upgrading (VPU)  process.

• Advantages: high-throughput capabilities, excellent heat and mass transfer characteristics, 

and superior reaction rates of gas-solid mixtures.

Combustion processMTO process Biomass VPU process
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Gas-Solid Fluidization Regimes

Gas Velocity

• Fluidized bed: A typical fluidized bed is a cylindrical column in which solid particles are 

suspended in a fluid at a certain fluid velocity.

• Increasing of gas velocity, several fluidization regimes can be observed.

• Gas-solid fluidization is very complex.

J. Ruud van Ommen, 2003
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Multi-Scale Structure of Gas-Particle Flows

• From macroscale to microscale

Macroscale Mesoscale Microscale
• Particle interactions

• Particle shape 

• Phase change

• Wakes

• Particle segregation

• Clustering or bubbling

• Turbulence modulation

• Large length and time scale

• Large number of particles

Pictures credits: Frank Shaffer et al., Powder Technology, 2013, 86-99
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Why Coarse-Grid Simulation?

• Fine-grid simulation is very expensive, especially for

• Small particles belong to Geldart A (dp=~100 microns)

• Grid-independent requires computational grid ∆=~ 2-10 dp

• Fine grid simulation of industrial-scale reactors is impractical, such as FCC unit, 2D, O(106); 3D, O(109).

• Coarse grid simulation with ∆=~100-1000dp is required for industrial-scale reactor simulations.

Fine grid   Risers: ∆=~ 10 dp Fine grid   Bubbling: ∆= ~ 2-4 dp

homogeneous

• Drag models for gas-solid flow simulation

• “Standard” drag models are based on homogeneous solids distribution assumption

• They work best for fine grid simulations where solids are more homogeneous

• Coarse-grid simulations tend to over-predict the drag force. 

heterogeneous
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• Coarse grid simulation needs to 

account for sub-grid effect.

• Sub-grid gas-solid drag model is 

the most critical part.

• The homogeneous drag model has 

the form

𝐹𝑑 = 𝛽(𝑢𝑔 − 𝑢𝑠)

• The heterogeneous drag model 

introduces a correction factor, C

𝐹𝑑 = 𝛽 𝑢𝑔 − 𝑢𝑠 𝑯

Coarse-Grid Simulations Need Sub-Grid Closures

A
A-fine grid with standard drag model

B-coarse grid with standard drag model

C-target result with proper coarse-grid 

model

B
C

∆ = 2dp

Cell=7,611,000

∆ = 42dp

Cell=429,925

∆ = 42dp

Cell=429,925

2D 3D 3D

B
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• Homogeneous drag model (Applicable to highly resolved simulations of small scale systems)

• Derived from experiment or correlations: Wen and Yu, 1996; Ergun, 1952; Gidaspow, 1994

• Derived from PR-DNS of randomly arranged particles: BVK (Beetstra et al., 2005); HKL (Hill 

et al., 2001); TGS (Tenneti et al., 2011)

• Heterogeneous drag model-- considering mesoscale structure (Applicable to coarse-grid 

simulations of large scale systems, used for scale-up)

• Derived from mesoscale structure method: EMMS (Li and Kwauk, 1994)

• Derived from fine grid two-fluid model: Igci et al., 2008; Sarkar et al., 2016

• Derived from fine grid CFD-DEM model: Radl and Sundaresan, 2014

• Derived from PR-DNS of cluster configurations: MMS (Mehrabadi et al., 2016)

How To Obtain Heterogeneous Drag Models?
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• Homogeneous drag model • Heterogeneous drag model 

𝛽𝑆𝑎𝑟𝑘𝑎𝑟 = 𝛽𝑊𝑒𝑛−𝑌𝑢𝐻𝛽Wen−Yu =
3

4

𝛼𝑔(1 − 𝛼𝑔)𝜌𝑔|𝑢𝑔 − 𝑢𝑠|

𝑑𝑠
𝐶D0𝛼𝑔

−2.65

Fine grid

simulation

Filtering

Fitting

Heterogeneous Drag Derived From Fine Grid Two-Fluid Simulation

(Voidage, slip velocity, filter size)

Sarkar et al., 2016, Chemical Engineering Science,152, 443–456.
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New Filtered Drag Model

Original Sarkar filtered drag model 

(Sarkar et al. 2016)
New filtered drag model

• In theory, the heterogeneity index should approach 1 near the maximum solids-packing 

limit, the flow becomes homogeneous and no sub-grid corrections are needed.

• A new drag model was developed.

• A more realistic limit was imposed at the dense regime.

Xi Gao, Tingwen Li, Avik Sarkar, Liqiang Lu, William A. Rogers, 2018, Chemical Engineering Science, 184, 33-51.

packing limit
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• A comprehensive evaluation of 
drag models for Group A particles 
was performed

• Eight drag models were evaluated

• Detailed, three-dimensional
simulations were conducted 

• A range of fluidization regimes 
were modeled

• Model results were compared to 
experimental data from the 
literature

Bubbling

Fluidization

Turbulent

Fluidization

Pneumatic 

Transport

Fast 

Fluidization

Determine the Optimal Drag Model for Fluidization Simulation

Gas Velocity
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Determine Best Drag Model for Bubbling Fluidization

• Grid independence study: ∆ =48 dp

Figures show the instantaneous and time averaged bed voidage using different drag models

• The “Traveling fluidized bed” by Dubrawski et al. (2013)

New drag
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• Compare the axial profile of time-averaged voidage

Determine Best Drag Model for Bubbling Fluidization

• Note the variation in 

experimental measurements
• Pressure drop (   ) is a 

standard technique

• Best agreement with 

heterogeneous drag models

(New drag, Igci, Radl, 

EMMS)

• Homogeneous drag models 

over predict the bed 

voidage

• Ref: Dubrawski et al. 

(2013)

New drag
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Determine Best Drag Model for Turbulent Fluidization

• Grid independence study: ∆ =32 dp

Figures show the instantaneous and time averaged bed voidage using different drag models

New drag
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• Compare the axial profile of time-averaged voidage

Determine Best Drag Model for Turbulent Fluidization

• The experimental measurement 

are pressure drop values

• Best agreement with 

heterogeneous drag models

• (a) New drag

• (b) Igci et al.

• (h) EMMS (from literature)

• The Sarkar 2016 drag model 

underpredicted the voidage in the 

bottom regime.

• Ref: Venderbosch (1998)

New drag
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Determine Best Drag Model for Fast Fluidization

• Grid independence study: ∆ =206 dp

Figures show the instantaneous and time averaged bed voidage using different drag models

New drag
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Determine Best Drag Model for Fast Fluidization

• Compare axial profile of time-averaged voidage

• Experimental measurement: Fiber 

optic probe

• Best  agreement with 

heterogeneous drag models

• (a) New drag (note the 

under-prediction in the upper 

region)

• (h) EMMS (from literature)

• The  Sarkar (2016) drag model 

without a dense limit correction 

significantly under predicted the 

voidage in the fast fluidized.

• Ref: Wei et al. (1988)

New drag



18/24

Determine Best Drag Model for Pneumatic Transport

Figures show the instantaneous bed voidage using different drag models

New drag
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Determine Best Drag Model for Pneumatic Transport

• Compare axial profile of time-averaged voidage

• Experimental measurements 

are  pressure drop values

• Best agreement with 

heterogeneous drag models

• (a) New drag

• (h) EMMS (from 

literature)

• The old Sarkar (2016) drag 

model without a dense limit 

correction significantly under 

predicted the voidage.

• Ref: Andreux et al. (2008)

New drag
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Sarkar Igci Radl Gidaspow BVK TGS MMS EMMS
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Sarkar 2016

• Evaluate the agreement for 
all fluidization regimes

• Define an average error

• Based on this metric, the new 
drag model and the EMMS
drag model yield the best 
agreement for all fluidization 
conditions
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• The new drag model is a universal model, hence it is one of the  best options 

for gas-solid fluidized bed simulations

Determine Best Overall Drag Model

Xi Gao, Tingwen Li, Avik Sarkar, Liqiang Lu, William A. Rogers, 2018, Chemical Engineering Science, 184, 33-51.

New drag
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Comparison of Computational Cost

• Evaluate the computational cost for all 

fluidization regimes

• Factors: complexity of the drag expression, 

the flow patterns simulated and the parallel 

efficiency

• No significant difference in the TFB and 

DPTFB, about 4h/s.

• The computational cost for some drag models 

(Gidaspow, BVK and TGS) are several times 

lower than the new drag model in BFB and 

FFB. 

• These drag models predicted significantly 

different flow patterns (overall less dense 

bed) compared with that predicted by the new 

drag model. (adaptive time step)

New drag
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• Coarse grid simulations with homogeneous drag models failed to capture the 

gas-solid fluidization behavior in all regimes. Modification of  homogeneous 

drag models considering sub-grid effect is needed.

• A new filtered drag model was developed based on fine grid two fluid model 

simulation.

• The new drag model model gave superior predictions of the flow behavior in 

all fluidization regimes of Geldart A particles. 

Summary of Results
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