

Evaluation of Drag Models for Gas-Solid Fluidization of Geldart A Particles in All Flow Regimes

<u>Xi Gao¹</u>, Tingwen Li^{1, 2}, Avik Sarkar³, Liqiang Lu¹, William A. Rogers¹

1.National Energy Technology Laboratory, Morgantown, WV, United States2.AECOM, Morgantown, WV, United States3. Pfizer Inc., Groton, CT, 06340, United States

Wednesday, April 25, 2018 02:40 PM - 03:00 PM 8th World Congress on Particle Technology, 2018

- Motivation
- Multiphase CFD and coarse grid simulation
- Development of sub-grid drag closure
- Validation of drag model in all fluidization regimes
- Summary of results

Applications of Fluidized Beds

- NE NATIONAL ENERGY TECHNOLOGY LABORATORY
- Fluidized bed has attracted attention for several decades and has been widely used in chemical, petrochemical, and energy industries.
- Such as FCC processes, polymerization processes, MTO processes, combustion processes, **biomass thermal conversion, biomass vapor phase upgrading (VPU) process**.
- Advantages: high-throughput capabilities, excellent heat and mass transfer characteristics, and superior reaction rates of gas-solid mixtures.

Gas-Solid Fluidization Regimes

• Fluidized bed: A typical fluidized bed is a cylindrical column in which solid particles are suspended in a fluid at a certain fluid velocity.

ATIONAL

- Increasing of gas velocity, several fluidization regimes can be observed.
- Gas-solid fluidization is very complex.

Multi-Scale Structure of Gas-Particle Flows

• From macroscale to microscale

Macroscale

- Large length and time scale
- Large number of particles

Mesoscale

- Particle segregation
- Clustering or bubbling
- Turbulence modulation

Microscale

- Particle interactions
- Particle shape
- Phase change
- Wakes

Pictures credits: Frank Shaffer et al., Powder Technology, 2013, 86-99

U.S. DEPARTMENT OF

Why Coarse-Grid Simulation?

NATIONAL ENERGY TECHNOLOGY LABORATORY

- Drag models for gas-solid flow simulation
 - "Standard" drag models are based on homogeneous solids distribution assumption
 - They work best for fine grid simulations where solids are more homogeneous
 - Coarse-grid simulations tend to over-predict the drag force.
- Fine-grid simulation is very expensive, especially for
 - Small particles belong to Geldart A (dp=~100 microns)
 - Grid-independent requires computational grid $\Delta = \sim 2-10 \text{ dp}$
 - Fine grid simulation of industrial-scale reactors is impractical, such as FCC unit, 2D, O(10⁶); 3D, O(10⁹).
 - Coarse grid simulation with $\Delta = \sim 100-1000$ dp is required for industrial-scale reactor simulations.

Coarse-Grid Simulations Need Sub-Grid Closures

A-fine grid with standard drag model B-coarse grid with standard drag model C-target result with proper coarse-grid model

- Coarse grid simulation needs to account for sub-grid effect.
 - Sub-grid gas-solid drag model is the most critical part.
 - The homogeneous drag model has the form

$$F_d = \beta(ug - us)$$

• The heterogeneous drag model introduces a correction factor, C

$$F_d = \beta (u_g - us) H$$

- Homogeneous drag model (Applicable to highly resolved simulations of small scale systems)
 - Derived from experiment or correlations: Wen and Yu, 1996; Ergun, 1952; Gidaspow, 1994
 - Derived from PR-DNS of randomly arranged particles: BVK (Beetstra et al., 2005); HKL (Hill et al., 2001); TGS (Tenneti et al., 2011)
- Heterogeneous drag model-- considering mesoscale structure (Applicable to coarse-grid simulations of large scale systems, used for scale-up)
 - Derived from mesoscale structure method: EMMS (Li and Kwauk, 1994)
 - Derived from fine grid two-fluid model: Igci et al., 2008; Sarkar et al., 2016
 - Derived from fine grid CFD-DEM model: Radl and Sundaresan, 2014
 - Derived from PR-DNS of cluster configurations: MMS (Mehrabadi et al., 2016)

Heterogeneous Drag Derived From Fine Grid Two-Fluid Simulation

New Filtered Drag Model

- In theory, the heterogeneity index should approach 1 near the maximum solids-packing limit, the flow becomes homogeneous and no sub-grid corrections are needed.
- A new drag model was developed.
- A more realistic limit was imposed at the dense regime.

Xi Gao, Tingwen Li, Avik Sarkar, Liqiang Lu, William A. Rogers, 2018, Chemical Engineering Science, 184, 33-51.

10/24

ATIONAL

Determine the Optimal Drag Model for Fluidization Simulation

Outlet Outlet Outlet Outlet * * * * *** * * *** • A comprehensive evaluation of drag models for **Group A** particles 0.19 m 0.10 m 0.60 m was performed 0.69m 0.05 m **Eight drag** models were evaluated • 0.06 m Detailed, three-dimensional • simulations were conducted 0.96 m Ξ 9 m Н 0.751 ∞ 0.11m 0.11 m 0.133 m 0.05 m 0.186 m A range of fluidization regimes • were modeled 0.025 m Solid Inlet 0.0875 m Model results were compared to • * * * experimental data from the Gas Inlet Gas and Solid Inlet Gas Inlet Gas Inlet (b)(a) (c) literature (\mathbf{d}) Fast **Bubbling** Turbulent **Pneumatic** Fluidization Fluidization Fluidization Transport **Gas Velocity**

ENERGY

Determine Best Drag Model for Bubbling Fluidization

• The "Traveling fluidized bed" by Dubrawski et al. (2013)

Gas Inlet

Figures show the instantaneous and time averaged bed voidage using different drag models

Determine Best Drag Model for Bubbling Fluidization

• Compare the axial profile of time-averaged voidage

14/24

NETL Multiphase Flow Science

MF:X

Gas Inlet

Figures show the instantaneous and time averaged bed voidage using different drag models

Determine Best Drag Model for Turbulent Fluidization

ETL Multiphase Flow Science

• Compare the axial profile of time-averaged voidage

E:

- The experimental measurement are pressure drop values
- Best agreement with heterogeneous drag models
 - (a) New drag
 - (b) Igci et al.
 - (h) EMMS (from literature)
- The Sarkar 2016 drag model underpredicted the voidage in the bottom regime.
- Ref: Venderbosch (1998)

Determine Best Drag Model for Fast Fluidization

Determine Best Drag Model for Fast Fluidization

• Compare axial profile of time-averaged voidage

NETL Multiphase Flow Science Home of the MESX Software Suite

Determine Best Drag Model for Pneumatic Transport

NETL Multiphase Flow Science Home of the **MIFIX** Software Suite.

U.S. DEPARTMENT OF

Determine Best Drag Model for Pneumatic Transport

Compare axial profile of time-averaged voidage

- Experimental measurements are pressure drop values
- Best agreement with heterogeneous drag models
 - (a) New drag
 - (h) EMMS (from literature)
- The old Sarkar (2016) drag model without a dense limit correction significantly under predicted the voidage.
- Ref: Andreux et al. (2008)

Determine Best Overall Drag Model

 The new drag model is a universal model, <u>hence it is one of the best options</u> for gas-solid fluidized bed simulations

Xi Gao, Tingwen Li, Avik Sarkar, Liqiang Lu, William A. Rogers, 2018, Chemical Engineering Science, 184, 33-51.

Comparison of Computational Cost

• Evaluate the computational cost for all

fluidization regimes

- Factors: complexity of the drag expression, the flow patterns simulated and the parallel efficiency
- No significant difference in the TFB and DPTFB, about 4h/s.
- The computational cost for some drag models (Gidaspow, BVK and TGS) are several times lower than the new drag model in BFB and FFB.
- These drag models predicted significantly different flow patterns (overall less dense bed) compared with that predicted by the new drag model. (adaptive time step)

- Coarse grid simulations with homogeneous drag models failed to capture the gas-solid fluidization behavior in all regimes. Modification of homogeneous drag models <u>considering sub-grid effect is needed</u>.
- <u>A new filtered drag model was developed</u> based on fine grid two fluid model simulation.
- The <u>new drag model model gave superior predictions</u> of the flow behavior in all fluidization regimes of Geldart A particles.

- We would like to thank the support and help from **NETL Multiphase Flow Science Team**!
- This research was supported by the U.S. Department of Energy **Bioenergy Technologies Office (BETO).** The authors would like to thank BETO sponsors Jeremy Leong, Cynthia Tyler, and Kevin Craig for their guidance and support.
- This research was also supported in part by an appointment to the National Energy Technology Laboratory Research Participation Program, sponsored by the U.S. Department of Energy and administered by the **Oak Ridge Institute for Science and Education** (ORISE).

Thanks for your attention!

Any Question?

NETL 2018 Workshop on Multiphase Flow Science August 7-9, 2018

University of Houston, Houston, TX

Abstract submission: workshop@mfix.netl.doe.gov by June 1, 2018

